MicroRNA‐181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4
نویسندگان
چکیده
Our study aims to explore the role of microRNA-181b (miR-181b) and TLR in the regulation of cell proliferation of human epidermal keratinocytes (HEKs) in psoriasis. Twenty-eight patients diagnosed with psoriasis vulgaris were selected as a case group with their lesional and non-lesional skin tissues collected. A control group consisted of 20 patients who underwent plastic surgery with their healthy skin tissues collected. Real-time quantitative fluorescence polymerase chain reaction (RT-qPCR), in situ hybridization and immunohistochemistry were used to detect the expressions of miR-181b and TLR4 in HEKs of healthy skin, psoriatic lesional skin and non-lesional skin respectively. The 3' untranslated region (3'UTR) of TLR4 combined with miR-181b was verified by a dual-luciferase reporter assay. Western blotting and bromodeoxyuridine were applied for corresponding detection of TLR4 expression and cell mitosis. The expression of miR-181b in HEKs of psoriatic lesional skin was less than healthy skin and psoriatic non-lesional skin. In psoriatic lesional and non-lesional skin, TLR4-positive cell rates and the number of positive cells per square millimetre were higher than healthy skin. The dual-luciferase reporter assay verified that miR-181b targets TLR4. HEKs transfected with miR-181b mimics had decreased expression of TLR4, along with the decrease of mitotic indexes and Brdu labelling indexes. However, HEKs transfected with miR-181b inhibitors showed increased TLR4 expression, mitotic indexes and Brdu labelling indexes. HEKs transfected with both miR-181b inhibitors and siTLR4 had decreased mitotic indexes and Brdu labelling indexes. These results indicate that miR-181b can negatively regulate the proliferation of HEKs in psoriasis by targeting TLR4.
منابع مشابه
MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: Implications for psoriasis treatment
Psoriasis is a common and chronic autoimmune skin disease which affects 2 to 3% of the world population. Abnormal proliferation of human keratinocytes is an important feature of psoriasis, along with local hypoxia and vascular abnormal growth. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molec...
متن کاملMicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis.
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194...
متن کاملA novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ
Cannabinoid receptors (CB) are expressed throughout human skin epithelium. CB1 activation inhibits human hair growth and decreases proliferation of epidermal keratinocytes. Since psoriasis is a chronic hyperproliferative, inflammatory skin disease, it is conceivable that the therapeutic modulation of CB signaling, which can inhibit both proliferation and inflammation, could win a place in futur...
متن کاملNF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis
NF-κB is constitutively activated in psoriatic epidermis. However, how activated NF-κB promotes keratinocyte hyperproliferation in psoriasis is largely unknown. Here we report that the NF-κB activation triggered by inflammatory cytokines induces the transcription of microRNA (miRNA) miR-31, one of the most dynamic miRNAs identified in the skin of psoriatic patients and mouse models. The genetic...
متن کاملmicroRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation.
Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2017